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Segal's mechanism for the red shift is reviewed, and is examined from several 
points of view. In particular, its compatibility with the expansion hypothesis is 
discussed. An appendix is devoted to some new considerations on cosmic 
numbers. 

1. INTRODUCTION 

Some ten years ago Segal suggested a new mechanism for the red shift 
(Segal, 1972, 1974). Segal, moreover, presupposed the Einstein static uni- 
verse as background, and so he obtained a theory which constitutes an 
alternative to the expansion hypothesis. Since then this theory has been 
discussed (in print) by only very few scientists, even though it has a number 
of attractive features. 

One of the goals of the present paper is to reinterpret Segal's theory. In 
particular, we assert that his mechanism is compatible with the expansion 
hypothesis. This mechanism may therefore modify the calculations based on 
the expansion hypothesis, without requiring that they be abandoned. 

Another goal of this paper is to emphasize some foundational aspects 
of Segal's theory. In particular, this theory has suggested a new way of 
constructing quantized fields, as well as quantum states, on curved spaces. 
An examination of such fields and states, in turn, provides some theoretical 
support for Segal's mechanism. Moreover, this mechanism seems to suggest 
also some modifications or extensions in the theory of gravitation. (Segal's 
theory has led, in addition, to mathematical investigations of conformal- 
invariant wave equations; cf., e.g., Segal et al., 1981.) 

In discussing Segal's mechanism, it is often very convenient to follow 
Segal and to assume the Einstein static universe M as background, and we 
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will usually do so. We recall that 3 ; / = R  x X S3(p), where S3(p) is a 
three-sphere whose radius p is the radius of the universe. We summarize 
now some of the ingredients of this mechanism, and refer to Section 2 and 
to the references for further details. 

The Minkowski-conformal group (rather, a covering of this _group) has 
a natural action on /f/. The subgroup leaving a point v ~ M fixed is 
isomorphic to the Lorentz group with dilatations, and there is an associated 
relativistic time parameter v ~ Now, the space M is conformally flat, and 
Maxwell's equations have conformal invariance. Consequently, after a light 
ray (or a photon) is emitted, the subsequent propagation preserves the ray's 
Minkowski-space characteristics. When the light ray is observed at w ~ / f / ,  
then the relativistic time w ~ at w enters into the picture. The scales and the 
directions of the two times differ, and roughly, this is the origin of the red 
shift. 

We said "roughly" above, because there is some question about the 
roles of the two times v ~ and w ~ Indeed, one could say that the precise 
structure of the mechanism has not been fully clarified. We favor the view 
that the red shift occurs because the conformal invariance of equations for 
massless particles does not extend in a direct way to quantized fields (and 
the two times are conformally related). 

However, some conclusions can be drawn which are independent of the 
details of the mechanism. The structure o f / f / shows  t h a t / f / h a s  a global or 
absolute time t. The relativistic time v ~ agrees with t at v (and similarly, w ~ 
agrees with t at w). In fact, there is a kind of tangency between relativistic 
and global parameters, and if a point v' is a distance D away from v, then at 
v', t = v ~  O((D/p)3). This implies that the dependence of the red shift 
z(z) on a distance parameter ~- is quadratic for small ~', 

z ( r )  = (const)( I"/0 )2 ..}_ (higher-order terms) (1) 

We recall that 1 + z = Pem//lobs" 
We can outline the empirical situation as follows. We select a reason- 

able value for p, and for small ~- we may write 

z(~') = B ( r / p ) +  C(T/O)2 + (h.o.t.) (2) 

If we suppose that z0") is due entirely to expansion, then we should have 
ICI << B (Weinberg, 1977; Raine, 1981, pp. 36 and 37). This supposition is 
generally accepted, but it continues to be questioned by various authors 
(Abramenko, 1982; Narlikar, 1976; Nicoll and Segal, 1975, 1978; Segal, 
1972-1978). In particular, an alternative analysis of data by Nicoll and 
Segal (1975, 1978) shows in effect that IBI << C. This conclusion neatly 
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supports Segal's theory (on 37/). However, a permanently static universe 
seems to be an absurdity (Raine, 1981, p. 121). For example, it would have 
reached thermal equilibrium long, long ago. We therefore venture to say, 
that in (2) both B and C may be significant. 

As we mentioned, Segal's mechanism can be reconciled with expansion, 
and the respective contributions will evidently be given by the C term and 
by the B term (cf. Section 3). The resulting combination has a somewhat ad 
hoc character, and does not show the elegance of Segal's mechanism when 
the latter is based on M. But such a superposition of effects should not be 
surprising. We may indeed replace (2) by the more general expression, 

z( ~ ) = A + B('r/p )+ C('r/p )2 + (h.o.t.) (3) 

where A is the gravitational red shift. Then, from our point of view, the 
three terms would have mutually different origins. 

[The analysis of Nicoll and Segal (1975, 1978) could now be interpreted 
to mean that the present-day expansion, or contraction, is very small, 
without prejudice to expansion or contraction in the past or in the future.] 

In the latter part of this paper we discuss two aspects of Segal's 
mechanism which were noted before. We argue in Section 4 that this 
mechanism is a very natural one, from a purely theoretic point of view. In 
Section 5 we consider some implications of this mechanism for the gravita- 
tional field. 

We also take this opportunity and include an appendix which has only 
an indirect bearing on the main text. Namely, we discuss the cosmic 
numbers, in particular some relations involving p. We speculate that Planck's 
constant h may be related to p and to the totality of matter in the universe, 
through an extension of Mach's principle. 

We should like to emphasize one basic shortcoming of this paper. 
Namely, we touch upon various technical questions, of a mathematical or 
physical nature, which have not been resolved. A large part of our discus- 
sion is therefore somewhat speculative. (As an example, cf. our previous 
comment about the roles of the two times v ~ and w~ However, some of 
these technical questions could take a long time to be cleared. We felt that it 
might be desirable to have an overall picture of Segal's mechanism and of its 
perspectives now. 

2. SUMMARY OF SEGAL'S MECHANISM 

One could say that Segal's theory originated in the analysis of the 
Minkowski-conformal group. In effect, Segal exploited constructions such 
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as Penrose (1965, 1968) utilized for the study of the infinity of the 
Minkowski space. Such constructions can also be found in standard texts 
(Hawking and Ellis, 1973). 

In these constructions the Minkowski space is imbedded in a space 
having the topological structure of R ~ • S 3. Some further hypotheses about 
the latter space are necessary in order to carry out red shift calculations. We 
assume specifically 37/, as in the works of Segal and Penrose (and as in the 
Introduction). The axis of absolute time, i.e., the factor R ~, is to be 
determined by the condition that the average momentum with respect to 
this time axis should be zero. 

The summary that follows is adapted from Segal (1974) and Tarski 
(1980a). The structure 371 = R 1 • S 3 ( p )  implies a metric g for/~/, and we use 
the signature + - - - .  The metric g is conformally flat, and this fact is 
crucial for the analysis which follows. In particular: Given v ~ 37/, there 
exists a unique scalar function ho (defined on a neighborhood M~, of v) such 
that 

go(w)=~v(w)g(w), w~Mo (4) 

is a flat metric, and such that 

~v(v)  =1 ,  ?%(w) >1 for w4: v (5) 

The flat metric go can be correlated in a natural way with that of the 
tangent space M~ ~ at v, this latter space being a copy of the Minkowski 
space. Indeed, we can construct a unique map o o, the conformal map, which 
maps M~ ~ onto M v, isometrically with reference to g~,, 

oo: Mota~-~ Moc )~4 (6) 

This map also serves to define Minkowski-like parameters on M,,. The 
subset M o is therefore that part of the universe 37/which an observer at v can 
identify with the Minkowski space. 

To proceed further, it is convenient to introduce in particular two 
parametrizations. We may designate a point of M by (t, u x . . . . .  u 4) subject to 
Y'-(uJ) 2 = O  2. Let v = (0 . . . . .  0 , -  p). The Minkowski parameters (v ~ . . . . .  v 3) 
are then uniquely determined by the condition that for small values of 
O : =  maxlv" ], 

u =o k +o((D/o)3), t=o 0+o((D/0) 3) (7) 

where k = 1, 2, 3. The explicit transformation formulas between the two sets 
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of parameters can be found in Segal (1974) and Tarski (1980a). For 
reference we give one such formula, 

t /p=tan- ' [ (v~  whereV=(v~  2 (8) 

(We take c = h = 1.) We also give the explicit form of h e (Hawking and Ellis, 
1973), 

~o(V ~ ..... v3)=[l+(v~176 2] (9) 

where I v l  = (E(v*)2) 1/~. 
We introduce the Hamiltonian operators 

Ht= - i - 1 8 / 8 t ,  He= - i - 1 0 / 0 v  ~ (10) 

One can show that 

H i >  H e (11) 

and since H e >/0 for a state of free photons, then also H' > 0. Moreover, 
[H t, Ho] -~ O. This relates, e.g., to the fact that the scale of v ~ is not uniform 
with respect to that of t. 

We turn to the determination of the red shift. We follow Segal (1974) 
and set 

H e (~') = exp( i rH ' )  Heexp( - izH') (12) 

Here ~ is the time interval, measured along the t axis, over which the photon 
propagates. Note that ~- is now a natural measure of distance between two 
points on the sphere S3(p) [cf. (1)]. 

Now, in Segal (1974) it was argued that a measurement of frequency 
corresponds to the scale-covariant parts of the energy, which are the 
energies H o and He(z), and whose expectations are therefore gem and Pobs, 
respectively. An explicit determination of He(~" ) and of its action on a 
(nearly) plane wave shows that z(~-)= tan2('r/2p). This evaluation then 
yields (1) with const = 1/4. This evaluation differs from that which would 
be obtained by a naive application of (8) with V= 0, namely, z = tan2(~'/O). 

The scheme just outlined raises the following two questions, which are 
related. First: Since Jr / is  static, the t energy (determined by H') should 
be conserved. How can this conservation be reconciled with the red-shift 
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mechanism? An answer along the following line is given in Segal (1974). The 
emitted energy at v is the total t energy that is relevant (since near v, 
H t'..w. By). For contrast, the absorbed energy at w is only a part of the 
relevant t energy, while the remainder, described by H ~-  Hv(~'), remains as 
free radiation. 

Second: Can the red shift be derived in a more systematic way from 
Maxwell's equations adapted to 37/? In particular, from where comes the 
identification ~obs = (Hv(~')), and how should the (liberated) free radiation 
be described? 

A preliminary study in this direction was attempted in (Tarski, 1977), 
in the approximation of scalar photons and in the framework of classical 
fields. The point of view there presented could be called a converse to that 
based on the operator Hv(~- ) of (12). Namely, the basic premise of Tarski 
(1977) is that the interaction with sources (i.e., emission and absorption) is 
governed by the metric g, while the free propagation, in view of conformal 
invariance, combines the influence of both metrics g and g~,. The relevant 
Hamiltonian at v would then be H '  --- H v, and that at w would be H '  --- Hw, 
rather than Ho(~  ). We see here a more symmetric approach than the 
previous one. Moreover, the state vector, or Green's function, would be 
"weakened" upon propagation from v to w. 

This weakening can be handled more satisfactorily in the framework of 
quantized fields, which allow one to deal with changing numbers of par- 
ticles. An analysis based on quantized fields is outlined in Tarski (1980a), 
again in the approximation of scalar photons. The basic underlying observa- 
tion is the following: Translations, rotations, and Lorentz boosts induce 
transformations of quantized fields, which preserve particle number in case 
of free fields on Minkowski space. However, transformations of fields which 
are induced by conformal transformations change particle number. [This is 
why we said "no t . . . i n  a direct way" in the introduction. But see Section 4, 
point (iv).] In particular, a photon state vector corresponding to one photon 
emitted at v will appear at w as a conformal-transformed state vector, the 
latter describing a red-shifted photon and a cloud of soft photons. 

The crude approximations of Tarski (1980a) give the red shift 

z = ~:,/4 _ I = [I + ( T/p):] ,/4 _ I = �88 Tip ): (13) 

where we used (9) and v ~ = Ivl = ~'. The same applies to Tarski (1977), but 
cf. footnote in Tarski (1980a, p. 335). The value in (13) agrees for small 
with tan2(~'/2p) given before. 

We should like to give some technical details. The usual approach to 
constructing quantized fields on a manifold such as 37/is to consider fields 
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directly as operator-valued distributions, which yield operators when multi- 
plied by test functions and integrated over the manifold. Examples of such 
fields can be found in (Isham et al., 1981). Let us consider in particular the 
free scalar massless field X on M, which is defined by the equations 

( -  ~7~x7~ + ~ R ) x  = 0 ( laa)  

[ 0,X(U ), X(U')] = (i - l )3~(u ,  u') (lnb) 

where in the commutator we assume the same time t of X(u)  and of X(U'). 
Moreover, R is the scalar curvature of / f / ,  

R = - 6 / p  2 (15) 

and 35 is associated with the spatial part 3g of g in the usual way: 

focs ,cp)d3ulde t3g(u) l l /2 (3~) (u ,  u') =1 or 0 (16) 

The construction of the Fock space for this field also follows in the usual 
way. 

Such a field would not yield a red shift. Indeed, if we consider the 
Feynman diagrams for emission and for reabsorption of photons in the 
lowest order, then we would have conservation of t energy at each vertex, 
and hence no possibility of a red shift. In higher orders there would be some 
radiative energy loss, but this would be a qualitatively different phenome- 
non from red shift. 

In order to describe the red shift, we can start with the free scalar 
massless fields tp c~ on the tangent spaces Mo t~, M t ~  . . . .  and then transfer 
these fields with the help of maps which are induced from %, o w . . . . .  We will 
denote the resulting fields on M v, M w . . . .  c M by %, cp . . . . . .  

Then, if a (scalar) photon is emitted at v, it should be described with 
the help of %. However, to analyze the absorption process at w, we should 
use the transformed field % - U % U  -1. We refer to Tarski (1980a) for 
further details. We only note that it is intuitively to be expected, given 
nonconservation of particle number and a transformation that is near the 
identity, that a one-photon state should be transformed into a state contain- 
ing a red-shifted photon and a cloud of soft photons. In this way the energy 
balance can be retained. 

We note the following transformation rule: If suitable conventions are 
made, then 

~gw(W) _ Of Pv(w)U -1 _ fDv(W)~Io/2(w) (17) 
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where we wrote - in place of --, since the mathematical meaning of the 
transformation has not yet been made precise. The factor ~1/2 gives the red 
shift in (13) and will also be of interest to us in another connection. 

3. NONSTATIC BACKGROUND 

We turn to the problem of reconciling Segal's mechanism with a 
nonstatic background, in particular, with a Robertson-Walker metric 
(Hawking and Ellis, 1973; Raine, 1981). Let du indicate the infinitesimal 
distance on S3(p), so that ds 2= dt 2 -  du 2 on 37/. We now consider a 
manifold/ f / '  with 

d s 2  -~ d l 2  - r 2 (  t ) d u  2 (18) 

i.e., r( t )p  is the radius of the universe at time t. For simplicity of discussion 
we assume that r ( t )  is defined and continuous for all t. 

We make a change of variables, dt '= d t / r ( t )  and r ( t ) =  a(t ') ,  and 
obtain 

ds 2 = ct2( t ')(  dt '2 - du 2) (19) 

This metric is conformally flat, and we may proceed along the lines 
considered before. In particular, we may parametrize M'  by (t', u), and in 
this way adapt the formulas of Section 2 for ?%, etc. to this space. However, 
before analyzing the red shift, one comment should be made. 

In Section 2 we suggested describing the emission at v with the help of 
the metric 8(0), and then the free propagation should show the characteris- 
tics of both g and go = ~vg. In addition, we suggested using the field % 
induced by the map ov from the tangent space. In the present case it is 
clearly natural to use the metric 

go -~ ~'u Ot - 2ga (20) 

and the corresponding map %.,~. There is, however, the question, how 
should )~oot-2 be characterized, in order to have a well-defined procedure.'? 
In other words, why use )~o~t -2 rather than some other ?~v,a-2? The 
conditions (5) defining ?% are not fulfilled in general by )L,a-2. But such 
conditions will be suitable if v and w are restricted to have the same t 
coordinate, t o = t,,. Explicitly, we have the following: The conditions 

g v ( V ) = a - 2 ( t ' ~ )  and ?~o(w) > a -  2(t~,) (21) 



Segal's Mechanism for the Red Shift 433 

(for all w such that w ~ M o, w -~ v, t~ = to), are fulfilled by K o -- ~oct - 2 ,  and 
they determine K o uniquely. The map oo, ~ is then also determined. 

We turn to the red shift. Since the precise structure of Segal's mecha- 
nism has not been fully clarified in case of M, we can only speculate about 
the form that it may take on 3~/'. For example, the factor r 2 ( t )  may 
contribute to the red shift through a Doppler effect (cf. Raine, 1981), and 
the amount should then be compounded with the red shift as calculated 
before for 37/. 

An alternative approach depends on applying the methods of Section 2 
directly to 37/' (and on combining with the Doppler effect, which we ignore 
here). The approximations of Tarski (1980a or 1977) then give, as in (13), 

l+2'-w.[~o(w)//~v(V)]l/4=~l/4(w)[a(t~)//ct(tw)] 1/2 (22) 

[The reason for the factor ~o(v) is evident.] We wrote z' to indicate that this 
red shift refers to frequencies measured by t'. To convert to frequencies 
measured by t, we should include an additional factor a ( t ' ) / a ( t ~ )  and use 
a(  t ' )  = r(  t ). The result is 

1+ z =  ~ X / ' ( w ) [ r ( t v ) / r ( t w ) ]  1/2 (23) 

If we set t o = 0 and t w = % and assume that in the interval [0, ~'], 

IJ'l = const << r ( O ) / z  (24) 

then we recover the form (2), 

z = � 8 9  + � 8 8  (25) 

[One can replace here r(0) by r(~') if desired.] In this latter approach, the 
expansion factor /'(t) contributes to the red shift through both Segal's 
mechanism and the Doppler effect. 

4. DISCUSSION OF THE MECHANISM 

We assume now an arbitrary conformally flat background space, 
together with its perturbations. However, for definiteness we will refer to 37/. 
We should like to offer some general theoretical considerations for using the 
flat-space constructs like %, rather than global structures like X. This 
amounts to giving theoretical arguments for Segal's mechanism. 
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(i) The picture of evolution and a principle of equivalence. The quantum- 
field-theoretic scheme that we outlined can be portrayed as follows. When a 
photon (or a scalar quantum) is first emitted, it "senses" a flat neighbor- 
hood. As it moves, its relation to its flat neighborhood changes, and the 
curvature has its specific effects. In particular, a one-photon state vector can 
evolve to a many-photon state vector. But the entire process is constructed 
from elementary vectors which are associated with a flat space. 

One could also say that a picture of this kind is suggested by the 
general-relativistic principle of equivalence, if the latter is extended to the 
quantum domain. 

(ii) Perturbations of )ft. An additional argument for the foregoing 
picture of evolution comes from a consideration of perturbations of M. We 
recall that the construction of a photon state (quantum-mechanical, with 
s = 1) is a rather nontrivial procedure, and is one which requires the detailed 
structure of the Poincar6 group, or, e.g., of twistors. This construction can 
be carried out in a conformal-invariant way, and then it can be taken 
directly from the Minkowski space to if/. 

However, if we want to deal with quantum states directly over mani- 
~ 

folds, then we have to take into account also perturbations of M which in 
general are not conformally fiat. (This point should be relevant, if we are 
interested in discussing photon states over large distances.) Now, it seems a 
reasonable hypothesis, that a direct construction of a photon state over a 
non-conformally-flat space is not possible. The difficulties which have been 
encountered with non-null hypersurface twistors (Penrose and Ward, 1980) 
indeed would favor this hypothesis. On the other hand, the construction by 
transfer from flat spaces requires that we find an appropriate generalization 
of the map o o of (6) to non-conformally flat spaces. This is perhaps a more 
manageable task. 

We emphasize that the (conjectured) impossibility of a direct construc- 
tion applies specifically to massless particles with spin. For particles with 
mass or without spin, constructions directly on manifolds are possible (cf., 
e.g., Isham et al., 1981). But it is a reasonable expectation, that all elemen- 
tary particles on manifolds should be treated in the same way. [Then the 
studies of quantizing particles on manifolds, e.g., by path-integral methods, 
should be regarded as conceptually inappropriate. Cf., e.g., Tarski (1982) 
and references given therein.] 

(iJi) Locality. Considerations of locality similarly suggest the use of 
fields like ~0 o and the foregoing picture of evolution, in preference to global 
fields like X. The fields cp v can be constructed locally, while for X, we would 
have to have information about the global structure of space, and to take 
into account any singularities. A local description harmonizes better with 
general precepts. 
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(iv) Conformal transformations leaving the vacuum invariant. For com- 
pleteness we repeat the following possibility, which was mentioned in Tarski 
(1980a) but which was rejected there as inappropriate for handling the red 
shift problem. We recall that conformal transformations were constructed 
and analyzed which would allow the use of fields like % without a red shift 
(Hortaqsu et al., 1972; Swieca et al., 1973). These transformations depend 
on separating a free field into its creation and annihilation parts, and then 
not mixing the respective parts. But the separation in question is a highly 
nonlocal operation. Furthermore, such a procedure would bypass the 
Lagrangian aspects of the theory, and it is not clear how it could be 
incorporated into a consistent scheme of interactions. 

5. IMPLICATIONS FOR THE GRAVITATIONAL FIELD 

Segal's mechanism and the accompanying point of view raise some new 
problems for the quantum-theoretic gravitational interactions. The physi- 
cally interesting interactions include especially those of the electromagnetic 
field and of gravitational waves. We will, however, continue to use the scalar 
massless fields for examples. 

For simplicity we take again the Einstein static universe/f /as  back- 
ground, and we will allow small perturbations. We recall (Hawking and 
Ellis, 1973; Raine, 1981) that )f/ constitutes a solution to the equation 

R . .  - � 8 9  - g . . A  - 8~rGT~ t~ = 0 (26) 

where T 9 )  has the form 

T0~ (~ =:/x (~ > 0, T~ ~~ 0 otherwise (27) 

~to) being a constant. By noting that in the coordinates (t, u) the spatial and 
the temporal components do not couple, and that R0o = 0 and R = - 6 / p  2, 
and by taking the three-trace and the four-trace, we obtain (cf. Raine, 1981, 
p. 121) 

A = 47rG# ~~ = p- 2 (28) 

For a perturbed space we assume 

: g . ~ R  - g . ~ A  = R~,~ - 1 - 8~rGT~ (~ 8rrGT~ (29) 

where T~ is (in some sense) small. 
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We suppose now that we have a massless scalar field qo on 37/. We saw 
how the metrical structure of if/affects q0 and its representations. We would 
then like to ask, how could the converse effect be determined. 

Equation (29) clearly provides a means of describing the influence of qo 
and of its dynamic evolution on the metric. However, if (p interacts with a 
source field q,, then the use of different representations of qo for the ~o- 
interaction (i.e., the use of %, cp~, etc.) is affected by the curvature. So we 
expect to have a back-reaction: the effect of changes of representations on 
the metrical structure. 

Now, two fields %, % will differ in general by factors )`112, )`1/2, etc.; cf. 
(14). Therefore we expect to have the factors ),1/2 in T~,. Such factors may 
have macroscopic consequences (even if not easily observable ones); cf. 
examples in Tarski (1980b) and Berg and Tarski (1982). 

A more basic question that arises is that of conformal flatness and of 
conformal factors. We recall the problem mentioned in Section 4, that of 
generalizing the map o v to non-conformally-flat spaces. It appears that this 
problem should be regarded as in the domain of theory of gravitation. [We 
may also remark that the interplay of the metrics g, g~, brings to mind the 
two-metric theories of gravitation. Such theories are briefly reviewed in Will 
(1979).] 

APPENDIX. THE COSMIC NUMBERS AND MACH'S 
PRINCIPLE 

The cosmic numbers constitute a recurrent theme of discussion. We 
have in mind of course (1) the number N of nucleons in the universe, each 
having the approximate mass m, so that M : =  m N  is (roughly) the total 
mass, (2) the gravitational constant G, and (3) the age T of the universe, 
which we suppose to be of the same order as its radius O. In atomic units 
(c = h = m = 1), one has the familiar estimates 

M =  N - 1 0  s~ 0 -104~ G - 1 0  -4~ (A1) 

The challenge now is to interpret the evident relations among these values. 
Cf. Carr and Rees (1979) for a recent discussion, from the anthropic point 
of view. 

One such relation, which presupposes r = 1 but which depends neither 
on the value of h, nor on m nor on N separately, is 

M G  - 0 (A2) 
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This relation has been derived or otherwise discussed, in connection with 
Mach's principle and otherwise. See Sciama (1953) and Tarski (1980b) and 
references cited therein. One might say that here a preliminary orientation 
has been achieved. [Note that this relation is also implicit in (28).] 

The quantities in (A1) admit one other independent relation, which 
would necessarily require atomic units. We consider in particular the 
following: 

N - O 2 (A3) 

We do not know of any published discussion of this estimate in the context 
of cosmic numbers (but see below). Clearly, several kinds of interpretations 
can be envisaged. Foi" example, one might try to interpret (A3) in terms of 
thermal equilibrium, the empty static or nearly static space having a definite 
associated energy. 

We should like to offer the suggestion, that (A3) could be interpreted in 
terms of a dependence of h on N and p. Indeed, we regard such a 
dependence as stemming from a quantum-theoretic extension of Mach's 
principle. We recall the discussion of Mach (1960), where it is argued that a 
law of motion, in particular the law of inertia, is meaningful only in so far 
as motion can be related to other bodies, e.g., to the totality of matter in the 
universe. It is then natural to suppose that the same should apply to 
quantum mechanical motion, characterized by h. 

We can give an example in which h is considered as a variable. Let us 
introduce another value, hi, defined by the condition that the universe be 
close-packed with nucleons. For clarity of meaning we retain m in the 
formulas, and we set pl: = hi~m,  the new nucleon Compton wavelength. 
Close packing means that 

p3 _ Np] or p -  N1/3 (h l / /m  ) 

while (A3) implies p - N1/2(h / /m) .  Therefore 

(A4) 

h - h lN  - 1/6 (A5a) 

We can also put this into a form which has some resemblance to formulas 
for fluctuations in statistical physics: 

(Ax)(Apx)  > hi N -I/6 (A5b) 

It would be intriguing to construct a model theory which would illustrate 
how the combination h lN-1 /6  might arise. 
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There is another interesting aspect to (A3). This relation is reminiscent 
of an analysis of Eddington (1953), carried out in the framework of classical 
physics. He argued that, given N particles in a three-sphere of radius 0, and 
a coordinate system, then the origin of this coordinate system has an 
intrinsic fluctuation, whose standard deviation o is given by 

o = 2 p N  - 1/2 _ p N  - 1 /2  ( A 6 )  

Let us combine this result with (A3). We obtain 

o - 1 -  h / m  (A7) 

i.e., the standard deviation is roughly equal to the nucleon Compton 
wavelength. This is sensible on physical grounds. But we can take also the 
following point of view. If c = rn = 1, then h is in effect a measure of length. 
Then h - o N  -1/2, so that h is given directly in terms of cosmic quantities. 
This is in line with the extended Mach's principle, as suggested above. 

We find these observations rather remarkable. However, it is not at all 
clear, how the classical fluctuations in Eddington's analysis might relate to h 
and to quantum-mechanical uncertainties. 
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